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Abstract

A fundamental challenge for all communication systems, engineered or living, is the prob-
lem of achieving efficient, secure, and error-free communication over noisy channels. Infor-
mation theoretic principals have been used to develop effective coding theory algorithms to
successfully transmit information in engineering systems. Living systems also successfully
transmit biological information through genetic processes such as replication, transcription,
and translation, where the genome of an organism is the contents of the transmission.

Decoding of received bit streams is fairly straightforwardwhen the channel encoding al-
gorithms are efficient and known. If the encoding scheme is unknown or part of the data is
missing or intercepted, how would one design a viable decoder for the received transmission?
For such systems blind reconstruction of the encoding/decoding system would be a vital step in
recovering the original message. Communication engineersmay not frequently encounter this
situation, but for computational biologists and biotechnologist this is an immediate challenge.

The goal of this work is to develop methods for detecting and reconstructing the encoder/decoder
system for engineered and biological data. Building on Sandia’s strengths in discrete mathemat-
ics, algorithms, and communication theory, we use linear programming and will use evolution-
ary computing techniques to construct efficient algorithmsfor modeling the coding system for
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minimally errored engineered data stream and genomic regulatory DNA and RNA sequences.
The objective for the initial phase of this project is to construct solid parallels between biolog-
ical literature and fundamental elements of communicationtheory. In this light, the milestones
for FY2003 were focused on defining genetic channel characteristics and providing an initial
approximation for key parameters, including coding rate, memory length, and minimum dis-
tance values. A secondary objective addressed the questionof determining similar parameters
for a received, noisy, error-control encoded data set. In addition to these goals, we initiated
exploration of algorithmic approaches to determine if a data set could be approximated with
an error-control code and performed initial investigations into optimization based methodolgies
for extracting the encoding algorithm given the coding rateof an encoded noise-free and noisy
data stream.
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Summary

The initial phase of this work employed a three prong approach to address the problem of reverse
engineering error control (EC) encoded data. Approaches included: 1) Information theoretic studies
of the genetic channel and EC encoded data streams, 2) Cryptographic exploration of RNA data
streams, and 3) Investigation of the reverse engineering problem from an optimization framework.

In engineering systems, channel characteristics determine the EC coding used. We investigate
mutation rates for the replication process (modeled as an error introducing communication channel)
of various organisms. From analysis of mutagenesis data, wenote: 1) The relationship between
prokaryotic mutation rates and genome size exhibits power law behavior. This does not hold for
higher eukaryotes. 2) A link may exist between the mutation rate of a biological agent and the
agent’s pathogenicity. Initial findings show that the Biological Safety Level (BSL)-1 category con-
tained the agent with the lowest error rate while BSL-3 contained the agent with the noisiest genetic
channel. 3) Based on mutation rates we calculated the genetic channel capacity. Although there is
very little difference among the organisms studied, the channel capacity of higher eukaryotes tends
to be slightly larger than that of the DNA micorbes. Overall initial channel capacity calculations im-
ply a very high coding rate, one with minimal redundancy possibly of the form(n = N,k = N−1).
To determine EC coding parameters, we developed a method fordeterminingk for an(n= N,k) lin-
ear block code. The (7,4) Hamming, (16,11) Hamming, and (32,17) codebooks were analyzed using
a variation of the Shannon entropy. Codebook codewords contained randomly generatedT = 0..5
error bits. Entropic profiles asymptotically approached correct k values even in the presence of
noise.

The goal of our cryptographic study was to search RNA streamsfor mathematical relationships
or exploitable patterns. These relationships and patterns, if they exist, will improve our understand-
ing of how biological sequences store, process and handle genomic data. Initial work was performed
on Escherichia coligenes and leader sequences. Analysis methods included:

1. Lexicographical sorting to find matching sub-streams andobtain statistics on matching sub-
string lengths;

2. One and two element Markov models to determine if short common patterns exist;

3. Finding linear generators for RNA sequences mapped to GF(22) to determine the existence
of hidden linear relationships;

4. Analyzing the effect of various mappings of nucleotide bases to the elements in GF(22), to
determine if there are mathematical reasons to choose one mapping over another.

Lexicographical sorting found that leader sequences have larger matching sub-streams on average
than the fullE. coli gene sequence. The mean maximal matching substring length was 7.35 for
non-translated leader sequences (intergenic sequences),6.89 for the translated leader sequences,
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and 4.32 for the complete gene sequence. Currently, no obvious patterns were found using Markov
modeling. Additional studies are needed. The final two testswere intimately connected. The
research showed that the linearity of a stream depends on howthe bases are mapped. In particular,
the overall linearity of the stream (a ratio of the number of elements generated by a polynomial
over the degree of its generating polynomial) depends on which base is mapped to the zero element.
Mapping cytosine to the zero element (the other bases can be mapped to any of the remaining three
elements) gave the highest linearity ratios.

The problem of reconstructing an encoder/decoder system can be viewed as an optimization
problem. We have formulated the problem as an integer program (IP), which can be solved exactly
using available branch-and-bound technology. At present,these algorithms effectively reconstruct
encoders/decoders for error-free channels. However, scalability is a major issue, as we are currently
unable to solve the reconstruction problem for large, noisychannels. There are two issues with
scalability. The first is the strength of the lower bound, which in the current formulation appears
quite weak. This is causing a huge branch-and-bound tree, such that nodes can rarely be pruned.
The second is the memory consumption of the IP formulation (related to the number of nodes),
which scales as the product of codeword length,n, and the number of codewordsm. To achieve
scalability for realistically sized biological systems, different problem formulations and advances in
solver technology are required.
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Detection and Reconstruction of Error
Control Codes for Engineered and

Biological Regulatory Systems

1 Introduction

Years of biological experiments have produced descriptions of what occurs during the genetic repli-
cation, transcription, and translation processes. In translation for instance, molecular biologists have
identified key regions upstream and downstream of the initiation codon that affect the ribosome’s
ability to initiate translation and the rate at which translation initiation occurs. The specific effects
of base composition and distance of key bases from the initiation site is not completely understood
and has not been mathematically quantified. If we were able toconstruct a mathematical model to
describe the regulatory regions on messenger RNA (mRNA) which control ribosomal attachment
and the rate of translation initiation, we could reconstruct optimal translation initiation sites. These
optimal sites can be used in transgenic protein production (using an organism to produce proteins
foreign to that organism’s genome), increasing the expression of biosensor reporter proteins, and
regulating the expression of proteins useful for bioremediation in microbes of interest to the Depart-
ment of Energy (DOE).

Compiling a set of optimal regulatory sequences would proveexperimentally intractable. If we
limited our search of viable translation regulatory sites to sixty base sequences, we would examine
at least 584 sequences (assuming only the first base of the initiation codon is variable). Experimental
evaluation of such a large number of sequences is not a viableoption for biologists or biotechnolo-
gists. Developing a mathematical framework that correlates base composition and base location in
regulatory sequences with corresponding genetic regulatory response will provide a mathematically
detailed understanding of genetic regulation, produce a tool for optimizing sequences involved in
genetic regulatory control, and contribute to the understanding of genetic networks - a key aspect of
DOE’s Genomes to Life program. The understanding gained from this work will also benefit sev-
eral Sandia National Laboratories (SNL) research endeavors, including: development of biological
agents for bio-weapons defense and development of biological substrates for bio/nano-technology
systems.

1.1 EC Coding Methods for Genomic Sequence and System Analysis

Molecular biology has provided significant insights into the mechanisms of translation initiation.
Although a general consensus mRNA leader sequence can be formulated based on experimental
data [26], we still lack a mathematical model that correlates specific mRNA sequence with a specific
rate of translation initiation. To this end, we will view themRNA leader region (nucleotides from
30 to +30 inclusive) as points or codewords in a high dimensional space, where each point has an
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associated translation efficiency. The hypothesis of current work is that nucleotide variations in the
ribosome binding site region can be quantified using an EC coding framework and the effects of
these variations on translation initiation can be determined and predicted using such a framework.
Though the idea of biological coding spheres and biologicalcoding theory are not new [31, 24, 25, 2]
a rigorous development of biological codes for quantification and optimization of regulatory sites is
novel.

Application of coding theory to genetic data dates back to the late 1950s [11, 10] with the
deciphering of the genetic code. Since then, EC coding methods have been applied to genetic
sequence analysis and classification, biological chip design, as well as analysis of genetic regulatory
processes. Sengupta and Tompa approach the problem of oligoarray design from a combinatorial
design framework and use EC coding methods to increase the fidelity of oligo array construction
[27]. Reif and LaBean propose EC coding-based methods for the development of error-correction
strands for repairing errors in DNA chips [21].

Several researchers have moved beyond the qualitative models of biological communication
and attempted to determine the existence of EC codes for genomic sequences [31, 17, 23, 13, 16].
Liebovitch et al. and Rosen and Moore [13, 23] both developedtechniques to determine the ex-
istence of EC code for genomic sequence. Neither found evidence of EC codes for the sequences
tested. Given the computational limitations of the study, Liebovitch et al. suggest that a more com-
prehensive examination would be required. Both methods investigate a subset of linear block codes
and do not consider convolutional coding properties nor account for the inherent noise in genomic
sequences. Extending beyond specific genomic regions and sequences, MacDonaill develops an EC
coding model for nucleic acid sequences in general [16]. He has proposed a four-bit, binary parity
check EC code for genetic sequences based on chemical properties of the nucleotide bases. As
more researchers explore the EC coding properties of genetic sequences and apply these methods
to computational biology and molecular computing problems, the information and coding theoretic
properties of genetic systems can be further understood andpotentially exploited for bioengineering
applications.

In the remainder of this section we provide a basic introduction to coding theory and discuss
parallels between coding theory and genetic processes. Thenext three sections describe initial
approaches explored in this work. Section 2 presents information theoretic studies of microbial and
eukaryotic replication and EC block codes. Section 3 describes cryptographic analysis of mRNA
leader sequences andEscherichia coligene sequences and Section 4 analyzes inverse EC coding
from an optimization framework. The final section of this report summarizes our findings and
discusses future work.

1.2 Overview of Coding Theory

The need for coding theory and its techniques stems from the need for error control mechanisms
in a communication system. The system in Figure 1 illustrates how coding is incorporated into a
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typical communication system [29]. In an engineering communication system, digitized informa-

Modulation
Channel
Encoding

Digitized
Information

Channel Errors

Demodulation
Channel
Decoding

Received
Information

Figure 1. Communication system that incorporates coding .

tion is encoded by the channel (error control) encoder and prepared for transmission (modulation).
The encoded stream is transmitted through a potentially noisy channel where the sequence can be
corrupted in a random fashion. The output of the channel, thereceived message, is prepared for
decoding (demodulation) and then decoded by the channel (error control) decoder [29, 5]. The de-
coding process involves removal and possibly correction oferrors introduced during transmission.
The decoding mechanism can only cope with errors that do not exceed the code’s error correction
capability.

The channel encoder processes the digitized information frame by frame. An input frame con-
sists of a fixed number,k, of information symbols that are presented to the encoder. The output
frame, the frame to be transmitted, consists ofn (also fixed) output symbols, wheren is larger than
k. Since the number of output symbols is greater than the number of input symbols, redundancy has
been introduced [29]. The coding rate,

R = k/n (1)

is the the ratio of the number of input symbols in a frame to thenumber of output symbols in a
frame. The lower the coding rate, the greater the degree of redundancy [29, 15]. The encoder
combines the input symbols and introduces additional symbols based on a deterministic algorithm.
This results in a mapping of input frames into a set of output frames known as codewords. The
type of output produced is determined by the number of input frames used in the encoding process.
Block coding uses only the current input frame. Convolutional coding uses the current frame plus
mprevious input frames [29, 5].

The communication channel is the medium through which the information is transmitted to the
receiver. The channel can corrupt the transmitted message through attenuation, distortion, inter-
ference, and addition of noise. Channels can be characterized as memoryless, symmetric, additive
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white Gaussian noise (AWGN), bursty, or as compound channels. Channel characteristics determine
the type of EC encoding method used in the engineering system[29].

The channel decoder receives a series of frames that, given an errorless transmitted sequence,
should be composed only of codewords. If the received sequence has been corrupted during trans-
mission, there will be sequences which do not map uniquely toany codewords. This is used to detect
the presence of errors. Decoding algorithms are then used todetermine the original codeword and
correct the error. When the error rate exceeds the error correction capacity of the code, two things
can occur. The decoder may be able to detect the error but may not be able to find a unique solu-
tion and thus correct the error or, the decoder may not detectthe error because the corruption has
mapped one legal codeword into another legal codeword. The method of decoding is dependent on
the method of encoding.

The decoding of received bit streams is fairly straightforward when the channel encoding al-
gorithms are efficient and known. What if the encoding schemeis unknown or part of the data
is missing? How would one design a viable decoder for the received transmission? Communica-
tion engineers may not frequently encounter this situation, but for computational biology this is the
immediate challenge and barrier to understanding the vast amount of sequence data produced by
genome sequencing projects. To determine the algorithm used by living systems to transmit vital
genetic information, several researchers have explored the parallel between the flow of genetic in-
formation in biological systems and the flow of information in engineering communication systems
[9, 31, 22, 2, 17].

1.3 The Need for EC Coding in Living Systems

Battail [2] argues, similar to Eigen [8], that for Dawkins’ model of evolution to be tractable, error-
correction coding must be present in the genetic replication process. According to Battail, proof-
reading, a result of the error avoidance mechanism suggested by genome replication literature, does
not correct errors present in the original genetic message.Only a genetic error correction mechanism
can guarantee reliable message regeneration in the presence of errors or mutations due to thermal
noise, radioactivity, and cosmic rays [2].

Battail further asserts that the need for error protection becomes obvious when one considers
that the number of errors in ak-symbol message that has been replicatedr times is comparable to
the number of errors in an un-replicatedr ∗k-symbol message. For a given error rate, the number
of times an organism undergoes replication approaches an infinite number. Hence for a message
to remain reliable within an organism’s life cycle (not to mention evolutionary information trans-
mission which occurs over thousands of years) the message must have strong error protection [2].
The survival of an organism necessitates the existence of a reliable information replication process.
Therefore error-correcting codes must be used in replication or in another process of information
regeneration that precedes replication [2].
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1.4 Biological Communication System Frameworks

The relationship between the error control coding process and protein translation may not be ob-
vious. Figure 2 illustrates the central dogma of genetics. The central premise of genetics is that

Replication

Transcription Translation

DNA

mRNA

DNA

Protein

Figure 2. Central Dogma of Genetics

genes are perpetuated in the form of nucleic acid sequences but function once expressed as proteins
[12]. Three-base nucleic acid sequences, called codons, designate amino acids. There are sixty-four
possible codons and twenty amino acids. Hence different codons can specify the same amino acid.
This codon/amino acid designation is known as the genetic code [30]. There are three processes
which transform genes from nucleic acid sequences to functional proteins.

• Stage 1: Replication - A DNA sequence replicates to form two identical DNA sequence

• Stage 2: Transcription - Using one of the DNA strands as a template sequence, the infor-
mation contained in the DNA sequence is transcribed to its RNA equivalence. The result is
a messenger RNA (mRNA) sequence which contains the complement sequence of the DNA
template strand. The difference is that in mRNA, Uracil replaces Thymine bases [30].

• Stage 3: Translation - The mRNA serves as a template for producing polypeptide chains
or proteins. A polypeptide chain is a sequence of amino acidsbound together by peptide
bonds [12]. The ribosome is an important part of the mechanism which translates mRNA
information into proteins.

Researchers, such as Hubert Yockey who performed fundamental investigations of error cor-
recting coding properties of genetic systems, have explored the EC coding properties of genetic
sequences and systems [31, 17, 23, 13, 16]. Several researchers have developed communication
models for genetic processes [9, 31, 22, 2, 19]. Our analogy of genetic information transmission to
an engineering communication system is illustrated in Figure 3. The un-replicated DNA sequence
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Figure 3. Central Dogma of Genetics as a Coding System

is the output of an EC genetic encoder that adds redundancy toinherently noisy genetic information.
The noise in the source can be thought of as mutations transferred from parent to offspring. The ge-
netic channel is the DNA replication process during which errors are introduced into the nucleotide
sequence [19]. Incorporating the nested coding idea proposed by Battail [2], EC decoding occurs
in three phases represented by transcription, translationinitiation, and translation elongation plus
termination.

1.5 Reverse Engineering the EC Code

Coding theory algorithms can serve as powerful pattern recognizers for annotating biologically
active sites of a genome, and also as pattern generators thatcan mathematically represent the genetic
process and macromolecules that operate on the genomic sequence of interest. The mathematical
representation of a convolutional code is also the mathematical model for the digital system that
produces that signal (or pattern) and all other signals associated with that system.

Development of coding theoretic frameworks for molecular biology is an ongoing endeavor.
Although the existence of redundancy in genetic sequences is accepted and the possibility of that
redundancy for error correction and control is being explored and exploited, mathematically deter-
mining the encoding algorithm particularly for regulatoryregions remains a major research chal-
lenge. To this end we propose to determine the genetic encoder/decoder by reconstructing the
encoder from the mRNA sequence which we model as a noisy received EC encoded sequence.

Development of blind reconstruction methods can be useful in data transmission systems where
the encoding algorithm is unknown. When a message is received, the redundancy from the error-
control encoder must be algorithmically removed prior to further processing of the message. If the
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EC coding information is missing then the receiver must use the possibly noisy data to “guess” at the
underlying encoding system. We are faced with a parallel scenario when analyzing genomic data.
The information produced by genome projects hold the key to understanding how an organism func-
tions from genetic to cellular level behavior. Identifyinggene locations and regulatory regions are
fundamental steps in the “genome to life” process. It is not feasible to experimentally annotate all of
an organisms regulatory regions hence the need for computational tools for accurately deciphering
the information contained in genetic sequences. The majority of gene annotation techniques rely on
patterns and statistical characteristics of the genome formodel construction. While these methods
yield viable results, they do not offer insight into the underlying mechanics of the genetic process.
By devising a method for reconstructing the EC code of a received, noisy, signal we will provide a
way to:

1. Determine the encoder/decoder model for engineered systems where the encoding algorithm
is unknown. Addressing the problem for the engineering system provides a baseline for de-
veloping and testing computational models for biological systems.

2. Construct mathematical models of molecular machines (macromolecules such as ribosome,
RNA polymerase, and initiation factors) involved in the regulation of genetic processes.

During the initial phase of this project we use information theory, cryptography, and optimization
techniques to investigate methods for reconstructing the EC code of engineered and genetic data.

2 Information Theoretic Studies

The genetic communication system depicted in Figure 3 represents the error introducing transmis-
sion channel as the replication process. Shannon’s channelcoding theorem asserts that there exists a
channel code with rateR= k/n such that the probability of decoding error becomes arbitrarily small
asn increases [4, 28, 1]. The capacity of a transmission channel(the maximum data transmission
rate) is dependent on the error rate of the channelpi, j , the probability of the channel transforming
symboli into symbol j for i 6= j. In order to determine appropriate EC coding parameters forgenetic
regulatory sequences, we must characterize the replication channel and the error or mutation rates
associated with replication. Mutation derived capacity values can suggestRand from that plausible
n andk values for genetic systems. In addition to a mutation based approach we explore a Shannon
entropy-based approach to determinek for an(n = N,k) code.

2.1 Mutation and Replication Channel Capacity

Mutations are replication errors that remain or are missed by genetic proofreading mechanisms.
Drake et al. [7, 6, 3] have performed extensive research and analysis of mutation rates in prokary-
otic and eukaryotic organisms. Based on mutagenesis studies, they note that mutation rate in RNA
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viruses range from one per genome per replication for lytic viruses to 0.1 per geneome per replica-
tion for retroviruses and retrotransposons. DNA microbes,more complex and typically larger than
RNA viruses, have mutation rates of1300 per genome per replication. Moving higher still to the
larger more complex eukaryotic organism, higher eukaryotes have mutation rates ranging from 0.1
to 100 per geneome per sexual generation and a mutation rate of 1

300 per cell division per effective
genome. The effective genome is the portion of the genome where mutations are most lethal (i.e.
genes or exons) [7]. In general, while RNA viruses have significantly higher mutation or channel
error rates, DNA microbes have error rates relatively similar to the mutation rate in the effective
genome of higher eukaryotes. The question arises whether and how organism complexity (which
we can loosely approximate using genome size) is related to replication channel fidelity. Drake
investigates this for DNA microbes by analyzing the log-logplot of base mutation rates as a func-
tion of genome size [6]. We replicate this test using the basemutation and genome size data from
Drake et al. [7] for both the DNA microbes and the higher eukaryotes. Figure 4 and Figure 5 show
the log-log plots of genome size as a function of base mutation for DNA microbes and eukaryotic
organisms, respectively. The log-log plots for the DNA microbes are equivalent to Drake et al.’s
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Figure 4. Comparison of microbial genome mutation rate to genome
size

results as would be expected. The relationship between the DNA microbes’ mutation rates and
genome size exhibits power law behavior. We do not see a similar behavior for higher eukaryotes
although the eukaryotic data set contained a relativly small number of organisms. As concluded by
Drake et al. and illustrated in Figure 4 , there is an inverse relationship between genome size,G, and
an organism’s base mutation rate,µb. This inverse relationship is evident for the higher eukaryotes
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Figure 5. Comparison of eukaryotic genome mutation rate to genome
size

as well.

Based on mutation rates in Drake et al. [7] we calculate the genetic channel capacity. Assuming
a discrete memoryless channel (DMC), the capacity of the channel,C, is the maximum reduction in
uncertainty of the inputX given knowledge ofY [4]:

C =sup
X

I(X,Y) (2)

where
I(X,Y) = H(X)−H(X|Y) = H(Y)−H(Y|X) (3)

The Shannon entropyH(X) andH(Y|X) are defined as:

H(X) = −∑
i

p(xi)log2p(xi) (4)

H(Y|X) = −∑
k

∑
j

p(xk,y j)log2p(y j |xk) (5)

The probability p(y j |xk) is the channel error probability. Ifp(y|x) is specified by the mutation
error rateµb then p(y j |xk) = µb, ∀y 6= x and p(y j |xk) = 1− µb, ∀y = x (whereµb is the muta-
tion rate per base per replication). We assume two differentchannel transition matrices. For the
first case, Table 1, we assume all base mutations are equal, hence a transition mutation (purine to
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purine,Adenine(A)↔Guanine(G) and pyrimidine to pyrimidine,Cytosine(C)↔ Thymine(T)) and
a transversion mutation (purine to pyrimidine,(A,G) → (C,T) and pyrimidine to purine,(C,T) →
(A,G) ) are equally probable. The second case, Table 2, we assume that transition mutations are

Table 1. Channel transition probability assuming p(Transition Muta-
tion)=p(Transversion Mutation)

A G C T
A 1−µb

µb
3

µb
3

µb
3

G µb
3 1−µb

µb
3

µb
3

C µb
3

µb
3 1−µb

µb
3

T µb
3

µb
3

µb
3 1−µb

twice as probable as transversion mutations. Figure 6 and Figure 7 show the replication channel

Table 2. Channel transition probability assuming p(Transition Muta-
tion) 6=p(Transversion Mutation)

A G C T
A 1−µb

2µb
3

µb
6

µb
6

G 2µb
3 1−µb

µb
6

µb
6

C µb
6

µb
6 1−µb

2µb
3

T µb
6

µb
6

2µb
3 1−µb

capacity of the organism as a function of the log of the organism’s genome size for DNA microbes
and higher eukaryotes usingµb values from Drake et al. [7] and channel transition probabilities
from Table 1. Figure 8 shows the channel capacity for DNA microbes and higher eukaryotes com-
bined. There is very little difference among the organisms studied, the channel capacity of higher
eukaryotes tends to be slightly larger than that of the DNA micorbes. The initial channel capacity
calculations imply a very high coding rate, one with minimalredundancy of the form (n=N,k=N-1).
Further calculations are necessary and the number of replication cycles need to be taken into consid-
eration since mutation errors are cumulative and the channel model should reflect this. Calculations
using Table 2 channel transition probabilities yield similar results.

2.2 Channel Capacity and Pathogenicity

Since lower error rates indicate a higher channel capacity,Figure 8 suggests that in general, in-
creased organism complexity implies increased transmission fidelity. One could extrapolate further
and suggest that this implies that the need for error controlis reduced as complexity increases. On
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the contrary, we assert that the higher fidelity is due to the incorporation of redundancy for error con-
trol purposes. Therefore less complex organisms without sufficient error control encoded into their
genomes (resulting in a smaller genome size) must explicitly incorporate a redundancy method in
order to survive. The large number of virons present in an infected cell or phages/plasmids present
in microbes can be viewed as the less complex organism’s method for explicitly incorporating error
control. If we were transmitting over a noisy engineering channel and were unable to modify our
message in order to incorporate a stronger error control algorithm, a simple way to increase fidelity
is to transmit the message multiple times, thereby effectively incorporating error control into our
system.

Another way to combat the problem of transmission over a noisy channel without modifying
the message is, if the alternative exists, transmit over a channel with lower noise. It appears this
is the route viruses, phages, and plasmids exploit when theyinsert into their host genome. RNA
viruses have relatively low complexity and high mutation rates. Drake et al. note that the RNA
virus/retrovirus populations are “likely to be extinguished when mutation rates are increased to a
few fold over one [7].” Lytic RNA viruses have a mutation rateof 1/genome/replication. But retro-
viruses and retrotransposons have a mutation rate of 0.1/genome/replication, an order of magnitude
difference. Retroviruses insert their reverse-transcribed chromosome into the chromosome of a dif-
ferent cell and retrotransposons insert their reverse-transcribed chromosome into the chromosome
of the cell in which they reside. While the lytic RNA virus produces multiple copies of itself using a
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noisy channel, retroviruses and retrotransposons elect touse the host’s less noisy replication channel
and therefore reduces the need for large copies or retransmissions of their genetic information.

Similar behavior is seen in the F plasmid and Bacteriophageλ infection ofE. coli. As a prophage
Bacteriophageλ and non-conjugating F plasmid both have mutation rates equivalent to their host’s,
but during lytic replication, Bacteriophageλ has a higher mutation rate. Likewise F plasmid’s
mutation rate is five to twenty times higher during conjugation [7]. This supports our assertion that,
similar to RNA viruses, lower complexity organisms incorporate error control by alternate means in
order to successfully transmit their genetic information.

Drake et al. suggest that a lytic virus’ high mutation rate may have a strong link to its low infec-
tivity. Beyond survival, we speculate that mutation rates may determine an organisms pathogenicity
or a host’s susceptibility to infection. Given the trend formore complex organisms to have less noisy
transmission channels and lower complexity organisms (typically the pathogenic agents) tendency
towards noisier transmission channels, we hypothesize that the more noisy the agent’s replication
channel in relation to the host’s channel the more virulent the agent. Virulence is the agents degree
of pathogenicity. There are various values used to determine an agents virulence:

LD50: The number of organisms/agents needed to kill fifty percent of the host organism.

ID50: The number of organisms/agents needed to cause infection in fifty percent of the host or-
ganism.

During this initial phase we were unable to find sufficient virulence information for various hosts to
test our hypothesis but indirect virulence information foragents potentially harmful to humans was
readily available. Potential human pathogens are classified using Biological Safety Levels (BSL)
designations. There are four levels:

BSL-1: The agent is not associated with disease in healthy adult humans.

BSL-2: The agent is associated with a disease which is rarelyserious and for which preventive
measures or therapeutic interventions are often available.

BSL-3: The agent is associated with a serious or lethal disease for which preventive measures or
therapeutic interventions may be available.

BSL-4: The agent is likely to cause serious or lethal human disease for which preventive measures
or therapeutic interventions are not usually available.

Using mutation data from Drake et al. [7] and BSL classification data from the Center for
Disease Control (CDC) website we looked at the genome mutation ratesµg by BSL levels (Figure 9)
for the organisms in Table 3.

Figure 9 suggests that a link may exist between the mutation rate of a biological agent and the
agent’s pathogenicity. The BSL-1 category contains,E. coli K-12, the agent with the lowest error
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Table 3. Human pathogens classified by Biological Safety Levels

Pathogens
BSL-1 Escherichia coliK-12
BSL-2 Murine leukemia virus (MLV), Bovine leukemia virus (BLV),

Rous sarcoma virus (RSV), Polio virus, Influenza A
BSL-3 Human immunodeficiency virus type 1 (HIV-1),

Vesicular stomatitis virus (VSV)
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rate while BSL-3 contains VSV, the agent with the noisiest genetic channel. Further investigation
with larger data sets for various host/pathogen virulence data is needed in order to draw a more
definitive conclusion. Virulence data withLD50 andID50 values need to be compiled from literature
and should provide better insight into the relationship between virulence and host/pathogen channel
fidelity.

2.3 Entropic Methods for Determining k

To determine EC coding parameters, we developed a method fordeterminingk for an (n = N,k)
linear block code. Given an(n,k) codebook, the amount of information contained in the codebook is
k bits. We began by calculating the entropy of each of thei positions in the codewords,Hn,k

i , f or i =
1..n. The Shannon entropy of the (n,k) codebook was then defined as

Hn,k =
n

∑
i=i

Hn,k
i (6)

Initial calculations yieldedHn,k ≈ n for each codebook set tested. We varied the entropy calculations
to evaluate positional entropy for varying window sizewk = 1..n. The assumption is aswk → k the
averageHn,k → k where, for a fixedwk, the average entropy is:

Hn,k
avg =

1
n−wk +1

n−wk+1

∑
i=1

i+wk−1

∑
j=i

Hn,k
j (7)

We calculateHn,k
avg for the (7,4) Hamming, (16,11) Hamming, and a (32,17) linearblock codebooks.

Figure 10 and Figure 11 show the ratioHn,k
avg

Hn,k
max

(whereHn,k
max= wk) andHn,k

avg for all estimates ofk for the

(7,4) Hamming codebook. Figure 12 and Figure 13 show similarresults for the (16,11) Hamming
codebook. As illustrated in the results, the modified entropy calculations were also applied to (7,4)
and (16,11) Hamming codebooks containing randomly generated T = 0..5 error bits. Aswk → k

the average entropy profile,Hn,k
avg, asymptotically approachesk and the ratioHn,k

avg

Hn,k
max

drops below one.

For wk > k the average entropy value does not exceed the correctk value. Further investigation is
necessary to determine whether the slope of the entropy ratio can provide any information regarding
the amount of noise present in the codebook set. Performing similar tests for the (32,17) code is
significantly more computationally expensive than for the (7,4) or (16,11) code, although we suspect
similar behavior would occur. This approach is a promising method for determiningk given an
(n = N,k) linear block code. The next step is to extend the current approach and develop a method
to determinen for an (n,k) linear block code. It is also necessary to expand and apply related
methods to the analysis of convolutional codebooks.
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3 Cryptographic Analysis of RNA Data Streams

The goal of this section of research is to analyze RNA streamsfor embedded information theoretic
relationships. We perform several initial tests on translated and non-translated initiation sequences
(with thirty bases before and twenty seven bases after the initiation sequence, for a total of sixty-
base strings) and on completeE. coli gene sequences. Simple tests, such as short Markov modeling,
finding matching substreams, and positional counts are performed on files with multiple related
streams. More complex tests, such as finding linearity measures for the streams and working with
multiple mappings ofn-offs of the streams are also performed.

3.1 The simple tests

The first analysis method used is lexicographical sorting ofthe strings to find maximal matching
substrings. Long matches found in the same RNA stream may indicate simple repetitive error
correction. Before sorting, the multiple initiation sequences are merged into two long sequences:
one composed of translated (valid leaders) and the other of non-translated (invalid leader) sequences.
The counts of the maximal substrings in each long sequence are listed in Table 4 and Table 5 (note:
the sixty-one long matching substring actually indicates amatching initiator sequence in the set).
The translated and non-translated leader sequence resultsare compared to a simpleE. coli gene

Table 4. Maximal substring length for translated sequence set.

Length number of subsequences
1 9
2 37
3 138
4 557
5 2240
6 5948
7 7441
8 4356
9 1667
10 537
11 154
12 53
13 9
14 8
16 2
61 1
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Table 5. Maximal substring length for non-translated sequence set.

Length number of subsequences
1 12
2 33
3 141
4 572
5 2195
6 7544
7 14055
8 11422
9 5066
10 1605
11 500
12 142
13 62
14 19
15 3
16 1
19 1
20 1
21 1
39 1
61 1

sequence (Table 6). The leader and non-leader sequences have, as expected, much larger matching
segments than those found in the full gene sequence.

Another simple test is to determine Simple Markov models (given the previous elements, what
is the probability distribution on the next element) for thedata. We develop models where one and
two preceeding elements determine the next element. Markovmodels are also constructed usingn-
offs. For example, if the stream iss0s1 . . ., then the 1-offs of this stream ares0s2s4 . . . ands1s3s5 . . ..
Since codons are three bases long, 2-offs are tried; 1-offs and 3-offs are experimented with to be
complete. At this time, nothing obviously unusual has been found, though a deeper investigation is
necessary.

3.2 Finding Linear Generators

A linear generator over a given field is a polynomial which, when applied to a sequence of elements
of that field, produces zeros. Linear generators overGF(2) are frequently used in communication
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Table 6. Maximal substring length for ilvE.dat –E. coli gene sequence.

Length number of subsequences
1 9
2 35
3 127
4 261
5 189
6 73
7 33
8 6
9 1
10 1

applications for synchronizing, adding randomness, for error correction and in cryptography.

Linear generators annihilate the sequence. That is, if the polynomial is applied to the sequence,
the resulting sequence would be all zeros. For example, the sequence overGF(2), 110010111, is
annihilated by the polynomialx3 +x+1 sincesi +si+1+si+3 = 0 for i = 0, . . . ,5.

In DNA/RNA sequences there are four regularly occuring nucleotide bases. Therefore the nat-
ural choice for the finite field isGF(22). Letting the integers 0,1,2,3 represent the elements of
GF(22) (0,1,x,x+1), the operator (addition/multiplication) tables are as follows:

+ 0 1 2 3

0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

× 1 2 3

1 1 2 3
2 2 3 1
3 3 1 2

The four bases,A,G,C,{T,U}, are first mapped to the integers 0, . . . ,3. A modified version of
the Berlekamp-Massey algorithm (see [20], page 200 and [14]) is applied to determine polynomials
and subsequences with high linearity ratios. A linearity ratio here is defined to be the length of the
sequence annihilated over the degree of the minimal polynomial annihilating it. For example, if the
stream (overGF(22)) is 20233202031, the first eight elements are annihilated byx2+2x1 +x0. The
linearity ratio for this is 8/2 = 4. A linearity ratio for a stream is the sum of the maximal linearity
ratios, greater than a given bound, for all substrings. The higher the linearity ratio of a stream the
more the elements are linearly dependant on one another.

One problem with the computation of minimal polynomials is the mapping from base to field
element. There are 4!= 24 possible mappings from the four base elements to the field elements.
Which is the best permutation, from a mathematical perspective? To answer that question, each
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mapping is applied to the stream and the linearity ratios andcorresponding polynomials are found.
The linearity ratios are identical for mappings which matched the fixed zero element. So the map-
ping

[

A G C U
3 2 0 1

]

gave the same linearity ratio for a given sequence as the mapping:
[

A G C U
2 3 0 1

]

The minimal polynomials for these mappings will have the same degree, though the polynomial
may be different. There are four different linearity ratiosfor each file tested, each linearity ratio
depends on which base is mapped to zero. On the initiation sequences (both translated and non-
translated), the highest linearity ratio occurs when cytosine is mapped to zero. The following are
examples of translated initiation sequences, using the mapping

[

A G C U
1 2 0 3

]

with high linearity ratios, with the bold portion of the sequences being annihilated by the polyno-
mialsx2 +x1 +3x0 andx3 +2x1 +2x0 respectively:

110332333311333313213122320112132213313233320300231233330130

013112011012210201221231311111132111100203310133200111011023

The mapping of cytosine to zero also gives the highest linearity ratios for the fullE. coli gene; the
ratio increases even further when a 2-off analysis is performed.

4 Reverse Engineering EC Encoders, An Optimization Framework

4.1 Linear Block Codes and Generator Matrices

Each codeword,v, in a (n,k) linear block code’s codebook can be produced using a generator
matrix,G, which encodes the information vector,u, in a deterministic manner [15]. The relationship
betweenu, v, andG is as follows:

v = uG (8)

whereG is k by n, u is 1 by k, andv is 1 by n. The parity-check matrix (also referred to as the
dual code ofG), H, is a(n−k) by nmatrix that relates to the generator as follows [15, 1]:

GHT = 0 (9)

whereHT is the transpose of the parity-check matrix. As its name suggests, the parity-check matrix
is used to check for transmission errors in the received sequence,r = v+e. In the absence of errors,
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e= 0, the syndrome vectors (the n− k symbol pattern that results from multiplying the received
sequence by the transpose of the parity-check matrix) will be an all zero vector:

s = rH T = (v+e)HT = vHT = 0 (10)

If Cn,k represents the code book (i.e. contains all codewordsv) for a linear(n,k) block code, then
based on Equation 10 we can state the following:

Cn,kH
T = Z (11)

whereZ is the all zero matrix. Therefore, given a set of codewords produced using a linear block
code, it is feasible to determine the dual code,H and ultimately the corresponding generator,G,
for the codebook. This is the rational used in constructing linear optimization methods for reverse
engineering an EC encoded data stream.

4.1.1 Systematic Codes

To further simplify the process, all linear block codes can be written in systematic form. For sys-
tematic(n,k) codes,G andH are of the form

G = [Ik;P] (12)

H = [PT ; In−k] (13)

whereP is ak by (n−k) matrix andI represents thek by k(or (n−k) by (n−k)) identity matrix
[15, 1]. Assuming a systematic code reduces the number of unknowns in theH matrix by(n−k)2.
The systematic form also simplifies conversion fromH back toG.

4.1.2 Construction of Optimal Generators for the Initiation Process

As a simple check of the reverse engineering framework, we perform initial tests using the (7,4)
Hamming code and genomic data fromE. coli K-12. For a given codebook setCn,k a linear, sys-
tematic block code model is assumed; henceG and H are of the form specified in Equation 12
and Equation 13, respectively. All possible solutions forP (exceptP = Z) are interrogated and the
optimal solution returned. The optimal solution produces an H that optimizes a cost function of the
form:

Fitness(H|P) = RS
|Zeros in S|

|S|
+RP

|Nonzeros in P|
|P|

(14)

whereSrepresents the syndrome matrix (each row inScorresponds to the syndrome of a code word
in Cn,k) andRS+RP = 1.0. Typical values forRS andRP are 0.70 and 0.30, respectively.

We test the methodology using the(7,4) Hamming codebook,CHamming(7,4)
[15]. The algorithm

successfully recovered the generator matrix for the(7,4) Hamming code. The verification test
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produces a code with a fitness value of one; this is expected sinceCHamming(7,4)
is a complete, error-

free representation of the code.

We perform additional tests usingE. coli K-12 leader sequences. Given the positive results from
the original block code model for translation initiation inE. coli K-12 [18], the systematic parity
check codebook,COriginal(5,2)

, is used as an initial estimate of the set of valid codewords for the
translation initiation system. We also use two additional codebook sets:COrigDmin(5,2)

andC16S(5,2)
.

COrigDmin(5,2)
is a reduced subset ofCOriginal(5,2)

, constructed by selecting a minimum number of code-
words fromCOriginal(5,2)

such that each information sequence is represented once andthe minimum
Hamming distance value for the code book set is maximized. The codewords in theC16S(5,2)

code-
book are the five-base subsets formed from contiguous bases of the 16S rRNA. Of the three block
code models constructed,G16S(5,2)

represented prokaryotic translation initiation the best.The gen-
eratorG16S(5,2)

distinguished between valid and invalid leader regions within the Shine-Dalgarno
region, a behavior consistent with the original block code model [17]. AlthoughGOriginal(5,2)

and
GOrigDmin(5,2)

produced regions where there are differences between leader and non-leader sequence
groups, the behavior of the leader sequences are the inverseof what is expected.

Our initial approach for finding an optimalH that satisfies Equation 11 is not robust. Simple
interrogation of every potential solution is not computationally feasible nor efficient. The basic
algorithm does not take into account potential noise in the data used to reconstruct the generator
matrix. In order to develop a realistic and feasible algorithm for determiningG given a potentially
noisy codebook set, we revisit the inverse coding problem from an optimization framework.

4.2 An Integer Programming Approach to Solving the Reverse-Engineering Prob-
lem

If Cn,k represents the code book (i.e., contains all codewordsv) for a linear(n,k) block code, then
it follows that for all z∈ Cn,k (wherez≡ v) we havezHT = 0. Consequently, a design goal for
determining the dual codeH is to satisfy this constraint for allz∈Cn,k. A codebook generated from
a set of DNA sequences will probably not satisfy this property. However, we can reasonably expect
that it will satisfy this constraint if we explicitly model errors. That is,(z+ez)HT = 0 for all z∈Cn,k

whereez is an error vector that depends onz.

We further assume thatCn,k is a systematic code. For systematic(n,k) linear block codes,H has
the formH =

[

PT ; In−k
]

, whereP is ak× (n− k) matrix andIn−k is the(n− k)× (n− k) identity
matrix. By assuming a systematic code we reduce the degrees of freedom in our model and exclude
the trivial solutionH = 0 from the set of candidate solutions.

Let E denote a given set of error vectors. It may be the case that no feasibleH exists for all
of the codewords inCn,k given the error vectors inE . Consequently, we define our objective as
maximizing the number of codewords inCn,k for which a feasibleH exists. Figure 14 provides an
integer program (IP) formulation for this problem, described using the AMPL modeling language.
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T ∑ delta Number of BB nodes
0 16 0
1 10 26
2 7 98
3 8 254
4 8 7

Table 7. Optimization results forC7,4 codebooks under variable noise.
’∑ delta’ denotes the number of codewords for which the resulting H
matrix is feasible.

Unfortunately, this initial formulation contains nonlinear constraints. Specifically, theH constr
constraints contain multiplicative terms inzandH. The resulting quadratic constraints significantly
complicate the solution of the corresponding IP. Specifically, nonlinear bounding techniques are re-
quired to compute lower-bounds for this class of problem. Such methods are not generally available
and the state-of-the-art research tools that have been developed for this problem class can only solve
instances with a limited number of variables.

Consequently, we are currently only able to consider a simplification of the full reverse-engineering
problem that does not incorporate error vectors, while retaining the original optimization objective
of maximizing the number of codewords inCn,k for which a feasibleH exists. The IP formula-
tion for this variant, again described using the AMPL modeling language, is shown in Figure 15.
Here, all constraints are linear, yielding an integer linear program (ILP). Many ILPs can be solved
using commercially available IP solvers such as CPLEX. These solvers use a branch-and-bound
engine in which lower bounds are computed by relaxing the integrality constraints and optimizing
the resulting pure linear program (LP).

We use CPLEX to solve the ILP formulation for the simplified reverse-engineering problem.
Specifically, we attempt to construct ‘maximal’H matrices for the following codebooks:C7,4,
C16,11, andC32,17. For each codebook, we consider both error-free and noisy variants; the noise
variants are constructed by randomly invertingT bits of each codeword. The results for theC7,4

codebook are shown in Table 7, withT varying from 0 to 4. The number of branch-and-bound (BB)
nodes is indicative of solution cost; however, in all cases the solution time is less than a minute
on a modern PC workstation. A ‘perfect’H matrix (i.e.,H is feasible for all codewords) is easily
identified in the noise-free scenario; as noise is added, solution time increases slightly while the
resultingH are only feasible for roughly half of the codewords.

Although effective for theC7,4 codebook, the current ILP approach fails to scale to the larger
C16,11 andC32,17 codebooks. In the case of theC16,11 codebook, we were able to locate a perfect
feasibleH for the noise-free scenario. However, the computation is intractable onceT ≥ 1. Our
analysis indicates that the source of the intractability isthe strength of the lower bound, which in
the current formulation appears quite weak. The result is a huge branch-and-bound tree, such that
nodes are rarely pruned. Another aspect of scalability is the memory required to store solutions at
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param modulus > 0;
param m > 0; # The number of code words
param n > 0; # The length of each code word
param h > 0; # The number of error vectors
param k > 0; # Length of original encoding

set CodeWordNdx := 1 .. m;
set EncodingNdx := 1 .. n;
set ErrorNdx := 1 .. h;
set range := 0 .. (modulus-1);
set ParityNdx := 1 .. (n-k);

param r{CodeWordNdx,EncodingNdx} integer;
param e{ErrorNdx,EncodingNdx} integer;
param v{i in CodeWordNdx, g in ErrorNdx, j in EncodingNdx} = v[i,g,j] = r[i,j]+e[g,j];
var H{EncodingNdx,ParityNdx} >= 0;
var z{CodeWordNdx,EncodingNdx} >= 0;
var delta{CodeWordNdx} binary;
var Delta{CodeWordNdx,ErrorNdx} binary;
var b{CodeWordNdx,ParityNdx} integer >= 0;
var w{CodeWordNdx,ParityNdx} integer >= 0;
var y{CodeWordNdx,ParityNdx} integer >= 0;

maximize objective: sum{i in CodeWordNdx} delta[i];

subject to bound1{j in EncodingNdx, p in ParityNdx}: H[j,p] <= modulus-1;
subject to bound2{i in CodeWordNdx, j in EncodingNdx}: z[i,j] <= modulus-1;
subject to z_defn{i in CodeWordNdx, j in EncodingNdx}:

z[i,j] = sum{g in ErrorNdx} Delta[i,g] * v[i,g,j];
subject to H_constr{i in CodeWordNdx, p in ParityNdx}:

sum{j in EncodingNdx} z[i,j]*H[j,p] = b[i,p];
subject to Modulus_constr1{i in CodeWordNdx, p in ParityNdx}:

b[i,p] - modulus*y[i,p] <= (modulus-1)*(1 -delta[i]);
subject to Modulus_constr2{i in CodeWordNdx, p in ParityNdx}:

b[i,p] - modulus*y[i,p] >= 0;
subject to H1{i in EncodingNdx, p in ParityNdx : i == p }: H[i,p] = 1;
subject to H2{i in EncodingNdx, p in ParityNdx : i != p and i<=n-k}: H[i,p] = 0;

Figure 14. An IP formulation to maximize the subset ofCn,k for which
a feasible dual codeH exists given a set of error vectors.
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param modulus > 0;
param m > 0; # The number of code words
param n > 0; # The length of each code word
param k > 0; # Length of original encoding

set CodeWordNdx := 1 .. m;
set EncodingNdx := 1 .. n;
set range := 0 .. (modulus-1);
set ParityNdx := 1 .. (n-k);

param r{CodeWordNdx,EncodingNdx} integer;

var H{EncodingNdx,ParityNdx} >= 0;
var z{CodeWordNdx,EncodingNdx} >= 0;
var delta{CodeWordNdx} binary;
var b{CodeWordNdx,ParityNdx} integer >= 0;
var y{CodeWordNdx,ParityNdx} integer >= 0;

maximize objective: sum{i in CodeWordNdx} delta[i];

subject to bound1{j in EncodingNdx, p in ParityNdx}: H[j,p] <= modulus-1;

subject to bound2{i in CodeWordNdx, j in EncodingNdx}: z[i,j] <= modulus-1;

subject to H_constr{i in CodeWordNdx, p in ParityNdx}:
sum{j in EncodingNdx} r[i,j]*H[j,p] = b[i,p];

subject to Modulus_constr1{i in CodeWordNdx, p in ParityNdx}:
b[i,p] - modulus*y[i,p] <= (modulus-1)*(1 -delta[i]);

subject to Modulus_constr2{i in CodeWordNdx, p in ParityNdx}:
b[i,p] - modulus*y[i,p] >= 0;

subject to H1{i in EncodingNdx, p in ParityNdx : i == p }:
H[i,p] = 1;

subject to H2{i in EncodingNdx, p in ParityNdx : i != p and i<=n-k}:
H[i,p] = 0;

Figure 15. An IP formulation to maximize the subset ofCn,k for which
a feasible dual codeH exists assuming no errors.
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each branch-and-bound node, which scales as the product of the codeword lengthn and the number
of codewordsm. Excessive memory requirements effectively prevents solution in the case of the
C32,17 codebook, independent ofT.

To achieve scalability to realistically sized biological systems, several challenges remain. To
solve the simplified variant of the reverse-engineering problem, different problem formulations (in
order to strengthen the lower bounds) and enhancements to existing solver technology (to address
memory concerns) are required. To solve the full reverse-engineering problem, significant and
fundamental advances in solver technology (in order to solve large non-linear IPs) is required.

5 Conclusion

The initial phase of our investigation into methods for reconstructing error control codes for engi-
neered and biological data streams has produced additionalinsight including: an information the-
oretic understanding of the replication channel and mutations produced by replication, a modified
Shannon entropy approach to characterizing coding rates ofEC encoded data, an initial crypto-
graphic analysis of translation regulatory sites, and an optimization framework for inverting EC
codes. Current results support the initial approach proposed for EC code reconstruction and exem-
plifies the difficulty of the code reconstruction problem. Our preliminary studies provide motivation
and define a roadmap for completing our exploratory investigation into the EC code reconstruction
problem for engineered and genetic systems. Future tasks include:

• Expansion of mutation based capacity calculations, accounting for number of replication cy-
cles and considering the effects of mutation hotspots. We will also investigate the relationship
between replication channel capacity and pathogenicity.

• Development of Shannon entropy-based methods for determining n for block codes and(n,k)
for convolutional codes. Application of these methods to DNA/RNA data and development
of computationally efficient approaches to implement the entropy-based analyses.

• Further investigation into Markov models for approximating encoded genetic and engineered
data streams. Markov models are particularly important when considering convolutional
codes.

• Further development of algorithms for discovering linear generators in nucleotide and engi-
neering sequences.

• Development of techniques for computing lower-bounds for IP formulation of the EC recon-
struction problem. Continued development and implementation of the ILP inverse coding
problem formulation.

• Development and implementation of a parallel genetic algorithm (GA) and genetic program
(GP) formulation of EC reconstruction problem.
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Successful research and development of automatic reconstruction algorithms for EC encoded
data will provide insights applicable to communication engineering and computational biology.
Asynchronous methods for EC decoding of intercepted or incomplete data transmissions can be
useful for deep space communication applications and lead to more efficient encoding/decoding
techniques for EC systems. Coding-based informatics toolscan be used to correlate base composi-
tion and location of regulatory sequences to the overall regulatory response of key genetic processes.
The knowledge gained will contribute to our quantitative understanding of biological systems and
provide insight for potentially modifying organisms of interest for applications in areas of national
need, including bio-sensors, bio-remediation and bio-terrorism defense. The ability to reconstruct
the code model for translation regulatory sites in yeast or organisms used for bio-sensor applications
will enable scientists to algorithmically design organism-specific regulatory sites that can increase
the expression of engineered reporter genes. Ultimately wehope to acquire the knowledge for
building “programs” or genomes for bio- and nano-technology applications.
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